๐ŸŽฑ Effective context engineering for AI agents (Anthropic, 2025-09-29)

October 13, 2025 in context engineering, agent, anthropic, claude 4 minutes

AI ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ์ปจํ…์ŠคํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ์ „๋žต

Effective context engineering for AI agents (Anthropic, 2025-09-29)

0/ Context๋ž€?

Context๋Š” LLM์—์„œ ์ƒ˜ํ”Œ๋ง(sampling)ํ•  ๋•Œ ํฌํ•จ๋˜๋Š” ํ† ํฐ(token) ์ง‘ํ•ฉ ์ „์ฒด๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” system prompt, message history, examples, tool outputs, ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๊นŒ์ง€ ํฌํ•จ๋œ๋‹ค. Context engineering(์ปจํ…์ŠคํŠธ ์—”์ง€๋‹ˆ์–ด๋ง)์€ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์–ป๊ธฐ ์œ„ํ•ด ์ด๋Ÿฌํ•œ ์ „์ฒด ํ† ํฐ์˜ ์œ ์šฉ์„ฑ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

LLM์„ ์ž˜ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด์„œ๋Š” thinking in context๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Š” ์ „์ฒด ์ƒํƒœ๋ฅผ ์‚ดํŽด๋ณด๊ณ  ๊ฐ ์ƒํƒœ๊ฐ€ ์–ด๋–ค ์ž ์žฌ์ ์ธ ํ–‰๋™์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ์„์ง€ ๊ณ ๋ คํ•˜๋Š” ๋ฐฉ์‹์„ ๋งํ•œ๋‹ค. ๋งค ํ„ด๋งˆ๋‹ค ์–ด๋–ค ํ† ํฐ์„ ์ถ”๊ฐ€ํ•˜๊ณ , ์ œ์™ธํ•  ๊ฒƒ์ธ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.

1/ Context engineering vs. Prompt engineering

Context Engineering๊ณผ Prompt Engineering ๋น„๊ต ๋‹ค์ด์–ด๊ทธ๋žจ

Anthropic์—์„œ๋Š” context engineering์„ prompt engineering์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ง„๋ณด๋กœ ๋ณธ๋‹ค.

Prompt engineering์ด ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์œ„ํ•ด system prompt๋ฅผ ์ž‘์„ฑํ•˜๊ณ  ์ฒด๊ณ„ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋ผ๋ฉด,

Context engineering์€ LLM inference๋™์•ˆ prompt ์™ธ๋ถ€์˜ ์ •๋ณด๊นŒ์ง€ ํฌํ•จํ•˜์—ฌ ์ตœ์ ์˜ ์ •๋ณด ํ† ํฐ๋“ค์„ ์ „๋žต์— ๋งž์ถฐ ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

prompting์€ system prompt๋ฅผ ์ž˜ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์— ์ดˆ์ ์„ ๋‘”๋‹ค. ๋ฐ˜๋ฉด Context engineering์€ ๋‹จ์ˆœํžˆ ์ข‹์€ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ์—ฌ๋Ÿฌ ๋ฒˆ์˜ ์ถ”๋ก , ๊ธด ์ถ”๋ก  ์‹œ๊ฐ„์„ ์š”๊ตฌํ•˜๋Š” agent์˜ ์ „์ฒด์ ์ธ context state (system instructions, tools, MCP ๋“ฑ)์„ ์ง€์†์ ์œผ๋กœ ๊ด€๋ฆฌํ•ด์•ผํ•œ๋‹ค.

์—์ด์ „ํŠธ ๋ฃจํ”„๊ฐ€ ๊ธธ์ˆ˜๋ก ๋‹ค์Œ ํ„ด์— ์–ด๋–ค ํ† ํฐ์„ ํฌํ•จํ• ์ง€๊ฐ€ ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•œ๋‹ค. Context engineering์€ ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „ํ•˜๋Š” ์ •๋ณด๋“ค๋กœ๋ถ€ํ„ฐ ์ œํ•œ๋œ context window๋ฅผ ์–ด๋–ป๊ฒŒ ์ „๋žต์ ์œผ๋กœ ์กฐ์ž‘ํ• ์ง€ ๊ณ ๋ คํ•œ๋‹ค.

2/ Agent ์„ค๊ณ„ํ•  ๋•Œ Context engineering์ด ์ค‘์š”ํ•œ ์ด์œ 

Context Rot

Context Rot : How increasing Input Tokens Impacts LLM Performance

ํ•ด๋‹น ์—ฐ๊ตฌ์— ์˜ํ•˜๋ฉด, ํ† ํฐ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ชจ๋ธ์ด ํ•ด๋‹น ์ปจํ…์ŠคํŠธ์—์„œ ์ •๋ณด๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋–จ์–ด์ง€๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ํ•œ๋‹ค.

Context Rot - ํ† ํฐ ์ˆ˜ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜ ๊ทธ๋ž˜ํ”„

์ด๋Š” Transformer์˜ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋•Œ๋ฌธ์ด๋‹ค. Transformer๋Š” ๋ชจ๋“  ํ† ํฐ์€ ๋‹ค๋ฅธ ๋ชจ๋“  ํ† ํฐ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ„์‚ฐํ•ด์•ผํ•œ๋‹ค. ์ „์ฒด context์—์„œ $N^2$์Œ์˜ ๊ด€๊ณ„๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, attention budget์€ ์œ ํ•œํ•˜๋‹ค. context ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก context rot(์ปจํ…์ŠคํŠธ ๋ถ€์‹)์œผ๋กœ recall ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง„๋‹ค. ๊ทธ๋ž˜์„œ ๊ฐ„๊ฒฐํ•˜์ง€๋งŒ ์ •๋ณด ๋ฐ€๋„๋Š” ๋†’์€ context์™€ ๋ฌด์—‡์„ ์•ž์— ๋‘๊ณ  ๋ฌด์—‡์„ ์ œ์™ธํ•  ๊ฒƒ์ธ์ง€ (๋ฐฐ์น˜/์„ ๋ณ„)์ด ์ค‘์š”ํ•˜๋‹ค.

2/ Effective Context engineering ์ „๋žต

ํšจ๊ณผ์ ์ธ Context Engineering ์ „๋žต ๊ฐœ๋…๋„

์ข‹์€ context engineering์ด๋ž€ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” high-signal ํ† ํฐ๋“ค์˜ ๊ฐ€๋Šฅํ•œ ์ง‘ํ•ฉ๋“ค ์ค‘ ๊ฐ€์žฅ ์ž‘์€ ์ง‘ํ•ฉ์„ ์ฐพ๋Š” ๊ฒƒ์ด๋‹ค. ์ฆ‰, ๊ฐ€์žฅ ์ ์€ ํ† ํฐ์œผ๋กœ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ตœ๋Œ€ํ•œ ์–ป๋Š” ๊ฒƒ์ด๋‹ค.

1๏ธโƒฃ System prompt

system prompt๋Š” ๋ฐ˜๋“œ์‹œ minimalํ•ด์•ผ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ minimal์€ ์งง๊ฒŒ ์ž‘์„ฑํ•˜๋ผ๋Š” ์˜๋ฏธ๊ฐ€ ์•„๋‹ˆ๋ผ, ๋ถˆํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ํฌํ•จํ•˜๋ผ๋Š” ๋œป์ด๋‹ค.

์ •๋ณด๊ฐ€ ๋„ˆ๋ฌด ๊ณผ๋„ํ•˜๋ฉด ๋„ˆ๋ฌด ๋ณต์žกํ•˜๊ณ , ๋„ˆ๋ฌด ๋ชจํ˜ธํ•˜๋ฉด ์ •๋ณด๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. specific ๊ณผ vague ์‚ฌ์ด์˜ ์ ์ ˆํ•œ ๊ท ํ˜•์„ ์ฐพ์•„์•ผ ํ•œ๋‹ค.

๊ตฌ์กฐํ™”

๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ช…ํ™•ํ•œ ์„น์…˜ ๊ตฌ๋ถ„์„ ์ถ”์ฒœํ•œ๋‹ค:

  • <background_information>
  • <instructions>
  • ## Tool guidance
  • ## Output description

XML ํƒœ๊น…์ด๋‚˜ Markdown ํ—ค๋”๋ฅผ ํ™œ์šฉํ•ด ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ตฌ์กฐํ™”ํ•˜๋Š” ๊ฒƒ์„ ๊ถŒํ•œ๋‹ค.

์ตœ์†Œ๋กœ ์‹œ์ž‘

์ตœ์†Œํ•œ์˜ ํ”„๋กฌํ”„ํŠธ๋กœ ์‹œ์ž‘ํ•˜์—ฌ ์ง์ ‘ ์‹คํ—˜ํ•ด๋ณด๋ฉด์„œ ์ ์ง„์ ์œผ๋กœ ๋ณด๊ฐ•ํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ ์ด๋‹ค.

2๏ธโƒฃ Tools

๋„๊ตฌ๋Š” Token efficient , agent behavior efficientํ•ด์•ผํ•œ๋‹ค.

  • ๊ธฐ๋Šฅ ์ค‘๋ณต์„ ์ตœ์†Œํ™”ํ•ด์•ผ ํ•œ๋‹ค.
  • ๋ช…ํ™•ํ•˜๊ณ  ๊ฐ„๊ฒฐํ•œ tool description
  • ์˜ค๋ฅ˜์— ๊ฐ•๊ฑดํ•œ tool ์„ค๊ณ„
  • ํˆด์…‹์ด ํฌ๋ฉด ํˆด ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๋ชจํ˜ธํ•ด์ง

3๏ธโƒฃ Few-shot prompting

์ฒœ ๋งˆ๋”” ๋ง๋ณด๋‹ค๋Š” ํ•œ ์žฅ์˜ ๊ทธ๋ฆผ์ด ๋‚˜์€ ๊ฒƒ์ฒ˜๋Ÿผ few-shot examples์€ ๊ทธ๋ฆผ์˜ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ ์˜ˆ์‹œ๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์ด ์›ํ•˜๋Š” ๋™์ž‘์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š”๋‹ค.

3/ Context Retrieval & Agent Search

โ€œjust in timeโ€

Claude Code๋Š” ์ด ์ ‘๊ทผ๋ฒ•(CLAUDE.md)์„ ์‚ฌ์šฉํ•ด ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ embedding ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋Œ€์‹  ๊ฐ€๋ฒผ์šด ์ฐธ์กฐ (ํŒŒ์ผ ๊ฒฝ๋กœ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ฟผ๋ฆฌ ๋“ฑ)์„ ์œ ์ง€ํ•˜๊ณ  ๋Ÿฐํƒ€์ž„์— ๋™์ ์œผ๋กœ ์ •๋ณด๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๊ฒƒ์ด๋‹ค.

Just In Time์€ ์ธ๊ฐ„์˜ ์ธ์ง€ ๋ฐฉ์‹์„ ๋ฐ˜์˜ํ•œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, ์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋“  ์ •๋ณด๋ฅผ ๋จธ๋ฆฟ์†์— ์ €์žฅํ•˜์ง€ ์•Š๊ณ , ํ•„์š”ํ•  ๋•Œ๋งˆ๋‹ค ์™ธ๋ถ€ ์ž๋ฃŒ๋ฅผ ์ฐพ๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ด ์—์ด์ „ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

  • ๋ชจ๋“  ์ •๋ณด๋ฅผ ๊ธฐ์–ตํ•˜์ง€ ์•Š๊ณ , ์™ธ๋ถ€ ํŒŒ์ผ ์‹œ์Šคํ…œ์„ ์ƒ‰์ธํ™”ํ•˜์—ฌ ํ•„์š”์— ๋”ฐ๋ผ ์—ฐ๊ด€ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ๊ฐ€์ ธ์˜จ๋‹ค. ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ์„ ํƒ์ ์œผ๋กœ ๊ฐ€์ ธ์˜ด์œผ๋กœ์จ context rot๋ฅผ ๋ฐฉ์ง€ํ•œ๋‹ค.
  • ์ฆ‰, ํŒŒ์ผ ์‹œ์Šคํ…œ์„ ๋‹จ์ˆœํžˆ ์ €์žฅ์†Œ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ตฌ์กฐํ™”๋œ ์™ธ๋ถ€ ๋ฉ”๋ชจ๋ฆฌ๋กœ ์‚ฌ์šฉํ•œ๋‹ค.
  • ์—์ด์ „ํŠธ๊ฐ€ ์ •๋ณด๋ฅผ ์‰ฝ๊ฒŒ ํƒ์ƒ‰ํ•˜๊ณ  ํšŒ์ˆ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก convention์„ ์ง€์ •ํ•ด ํŒŒ์ผ ์ด๋ฆ„์„ ์ž‘์„ฑ, timestamp๋ฅผ ์ถ”๊ฐ€, ๋ช…ํ™•ํ•œ ๋””๋ ‰ํ† ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๋ฉด ์ข‹๋‹ค.

3/ Long-Horizon Tasks

Agent ๊ฐ„๋‹จํ•œ ์ •์˜ : An LLM agent runs tools in a loop to achieve a goal.

Long-Horizon์„ ์š”๊ตฌํ•˜๋Š” ๋ณต์žกํ•œ ์žฅ๊ธฐ ํ…Œ์ŠคํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ์œ„ํ•œ ์ „๋žต

1๏ธโƒฃ Compaction

์ œํ•œ๋œ context window์˜ ํ•œ๊ณ„๋•Œ๋ฌธ์— compaction(์••์ถ•)์€ ์ค‘์š”ํ•˜๋‹ค. ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ content๋ฅผ ์ฆ๋ฅ˜ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด๋‹ค.

Claude Code์—์„œ๋Š” ๋ฉ”์‹œ์ง€ ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ๋ชจ๋ธ์—๊ฒŒ ์ „๋‹ฌํ•˜์—ฌ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์„ธ๋ถ€์‚ฌํ•ญ์„ ์š”์•ฝํ•˜๊ณ  ์••์ถ•ํ•˜๋„๋ก ๊ตฌํ˜„ํ•œ๋‹ค. ๋ชจ๋ธ์€ ์•„ํ‚คํ…์ฒ˜ ๊ฒฐ์ •์‚ฌํ•ญ, ๋ฏธํ•ด๊ฒฐ๋œ ๋ฒ„๊ทธ, ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ์€ ๋ณด์กดํ•˜๋ฉด์„œ ์ค‘๋ณต๋œ tool ์ถœ๋ ฅ์ด๋‚˜ ๋ฉ”์‹œ์ง€๋Š” ํ๊ธฐํ•œ๋‹ค.

(Claude Code ์‚ฌ์šฉํ•  ๋•Œ ์ผ์ • ๋Œ€ํ™”๋ฅผ ์ง„ํ–‰ํ•œ ํ›„์—๋Š” /clear ๋ช…๋ น์œผ๋กœ context ์ดˆ๊ธฐํ™”ํ•ด์ฃผ๋Š” ๊ฒƒ์ด ์ข‹๋‹ค.)

Recall โ†’ Precision

์ดˆ๊ธฐ์—๋Š” recall๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜์—ฌ ์ •๋ณด๋ฅผ ๋†“์น˜์ง€ ์•Š๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๊ณ  (์ฆ‰, ์ถ”ํ›„์— ์‚ฌ์šฉ๋  ์ •๋ณด๊ฐ€ ์ œ๊ฑฐ๋˜์ง€ ์•Š๋„๋ก), ๊ทธ ์ดํ›„์—๋Š” ํ˜„์žฌ ์ž‘์—…๊ณผ ๊ด€๋ จ ์—†๋Š” ๋ถˆํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ precision์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ฐ˜๋ณตํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค. (recall๋ฅผ ํ™•๋ณดํ•œ ํ›„์— precision์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์„ ๊ถŒ์žฅํ•œ๋‹ค.)

2๏ธโƒฃ Structured note-taking (agentic memory)

context ๋ฐ–์˜ ํŒŒ์ผ ๊ธฐ๋ฐ˜ ๋ฉ”๋ชจ๋ฆฌ๋กœ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์ถ”์ ํ•˜๊ณ , ์ง€์‹์„ ๋ˆ„์ ํ•œ๋‹ค. ํ•„์š” ์‹œ์—๋งŒ ๋‹ค์‹œ ๋กœ๋”ฉํ•˜๊ณ , ์žฅ๊ธฐ์ ์ธ ์ž‘์—…์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๊ณ , context๊ฐ€ ์ดˆ๊ธฐํ™”๋˜์–ด๋„ ์ž‘์—…์„ ์ด์–ด๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.

  • to-do list ์ž‘์„ฑ ๋ฐ ์ฃผ๊ธฐ์  ์—…๋ฐ์ดํŠธ (๋ชฉํ‘œ๋ฅผ ์žŠ์ง€ ์•Š๊ณ  ๊ณ„์† ๋ชฉํ‘œ๋ฅผ ํ–ฅํ•  ์ˆ˜ ์žˆ๋„๋ก ์•”์†ก)
  • NOTES.md ํŒŒ์ผ๋กœ ์ค‘์š”ํ•œ context ์œ ์ง€
  • ๋ณต์žกํ•œ ๊ณผ์ œ ํ•ด๊ฒฐ ๊ณผ์ • ์ถ”์ 

Claude Sonnet 4.5๋Š” built-in memory tool์„ ์ œ๊ณตํ•˜์—ฌ ์ปจํ…์ŠคํŠธ๊ฐ€ ์ดˆ๊ธฐํ™”๋˜์–ด๋„ ์ด์ „ ์ƒํƒœ๋ฅผ ๋ณต์›ํ•˜๊ณ  ์ž‘์—…์„ ์ด์–ด๊ฐˆ ์ˆ˜ ์žˆ๋‹ค.

*Agent์˜ 4๊ฐ€์ง€ ํ•ต์‹ฌ ๊ตฌ์„ฑ์š”์†Œ(Perception, Planning, Action, Memory) ์ค‘ Memory๋Š” ํ•„์ˆ˜๋กœ, ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ๋Š” ์ค‘์š”ํ•˜๋‹ค.

LLM ๊ธฐ๋ฐ˜ ์ž์œจ ์—์ด์ „ํŠธ์˜ 4๊ฐ€์ง€ ํ•ต์‹ฌ ๊ตฌ์„ฑ์š”์†Œ ๋‹ค์ด์–ด๊ทธ๋žจ (Perception, Planning, Action, Memory)

A Survey on Large Language Model based Autonomous Agents (2023)

3๏ธโƒฃ Sub-agent architectures

๋ณต์žกํ•œ ํ…Œ์Šคํฌ์—๋Š” multi-agent ์•„ํ‚คํ…์ฒ˜๊ฐ€ ์ ํ•ฉํ•˜๋‹ค. Main agent๋Š” planning & synthesis์— ์ง‘์ค‘ํ•˜๊ณ , Sub-agents๋Š” ํŠน์ • ์˜์—ญ์„ ๊นŠ์ด ํƒ์ƒ‰ํ•œ ํ›„ ์š”์•ฝ์„ ์‚ฐ์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ๊ตฌ์กฐ๋Š” ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ context ๋‚ด์— ํšจ์œจ์ ์œผ๋กœ ํ–‰๋™ํ•˜๋ฉด์„œ๋„ ๋ณต์žกํ•œ ์ตœ์ข… ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.